DIVANTIBOT

Etude de l'impact sur la biodiversité fongique de différents itinéraires de lutte contre la pourriture grise

M. COARER - IFV NANTES VERTOU, E. FORTIN, G. THOMAS, H. LUTELLIER - IFV MONREUIL BELLAY

NS CONTROL

Solutions de biocontrôle à base de levures *non-Saccharomyces* : screening in vitro, essais *in planta* et étude des capacités d'implantation

M. COARER – IFV NANTES VERTOU, G. DELANOUE, J. BEGUIN et L. FERNANDES– IFV AMBOISE

morvan.coarer@vignevin.com

Contexte et Objectifs

Maintenir le cap d'une réduction de 50 % selon une trajectoire en deux temps :

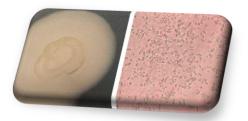
- 25% en 2020, - 50 % à l'horizon 2025.

Identifier, documenter, diffuser et valoriser les alternatives

Biocontrôle : quinzaine de solutions homologuées AB Bacillus amyloliquefaciens, subtilis...

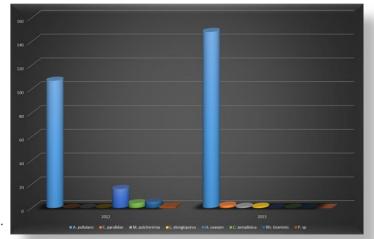
Trichoderma atroviride Saccharomyces cerevisiae

Aureobasidium pullulans


Effeuillage

Explorer le champ des possibles chez les non Saccharomyces

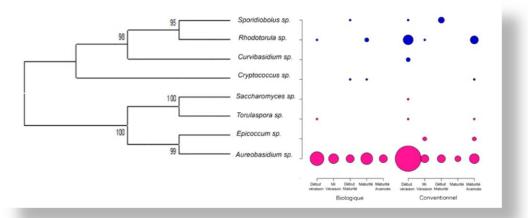
DIVANTIBOT : Contexte et Objectifs



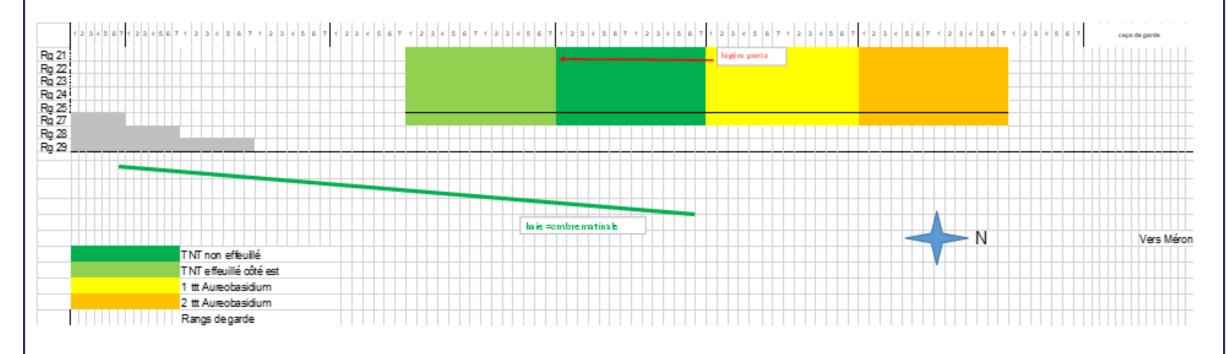
Aureobasidium pullulans

Botector ™
Espèce ultra majoritaire sur baie
Compétition spatiale
Efficacité très aléatoire :

- > Efficacité significative sur 12 % des sites (Fréquence d'attaque) et aucune sur intensité d'attaque
- > 44 % des sites n'ont pas d'efficacité sur la fréquence et 68 % sur l'intensité d'attaque.
- > Tendances positives sur plus de 44 % des sites (Fréquence d'attaque) et 32 % (Intensité d'attaque).

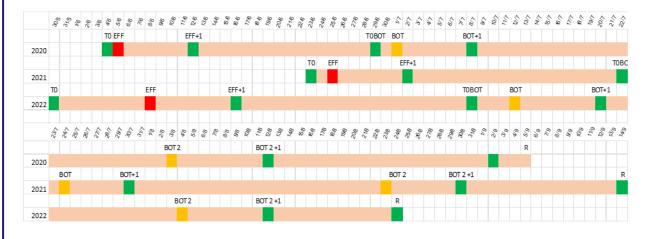


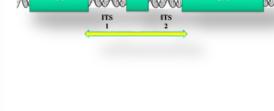
Effeuillage

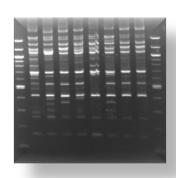

Efficacité importante quels modes d'action ? Impact sur la biodiversité fongique ?

DIVANTIBOT: méthodologie

Montreuil Bellay, Grolleau N clone 366 greffé sur Riparia clone 1030, 2011. 6 rangs de 56 pieds répartis en quatre modalités ; témoin non traité non effeuillé, effeuillé côté Est, 1 traitement Aureobasidium, 2 traitements Aureobasidium




DIVANTIBOT: méthodologie


Prélèvements non destructifs par rinçage, culture sur milieu nutritif, isolement, identification taxonomique et caractérisation infraspécifique, conservation CRB « Microorganismes Vigne Vin »

2022		TNT	EFF	Auréo 1	Auréo 2
30/05/2022	T0 global				
16/06/2022	1 semaine ap	rès effeuilla	ge		
08/07/2022	Bilan avant A	Nureobasidiun	n		
20/07/2022	1 semaine ap	orès 1er traite	ement		
12/08/2022	1 semaine ap	orès <mark>2</mark> ème tra	itement		
24/08/2022	Récolte				

DIVANTIBOT: méthodologie

Effeuillage : calcul des indices mathématiques de biodiversité

Estimation de la diversité

Indice de Shanon H' = - Σ (Ni / N) x Ln (Ni / N)

> Indice de Piélou J' = H'/Hmax

Indice de Simpson $D = \sum Ni(Ni-1)/N(N-1)$ Ni : nombre d'individus de l'espèce donnée.

N: nombre total d'individus.

Hétérogénéité

Equirépartition

Ni : nombre d'individus de l'espèce donnée.

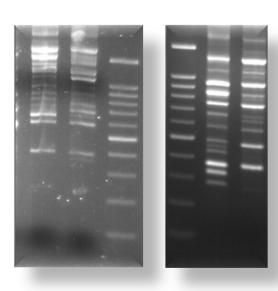
N: nombre total d'individus.

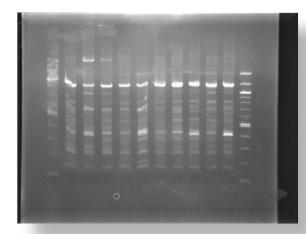
Diversité intra population

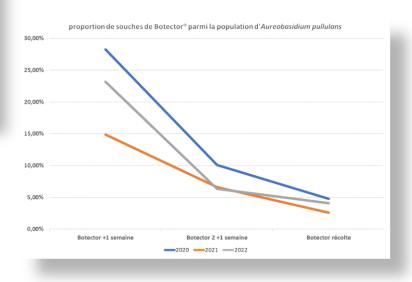
DIVANTIBOT : Résultats *Aureobasidium pullulans*

Mise au point d'une technique d'identification infra-spécifique :

validation PCR RAPD avec amorces A2 et B15 😊



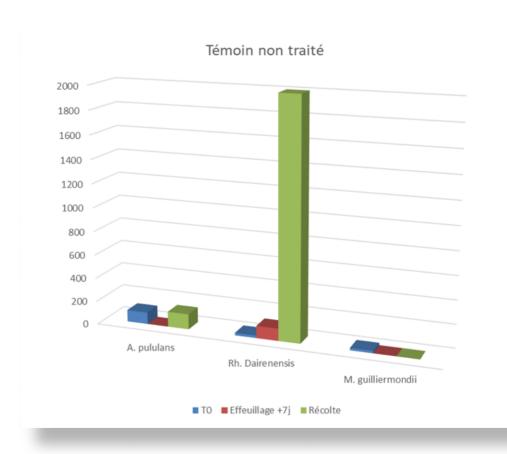

2 souches différentes 🙂

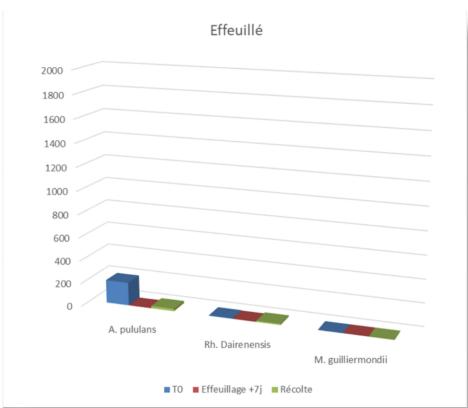

Efficacité de l'application :

capacité de ces 2 souches à s'implanter 😊

pérennité de l'implantation 😕

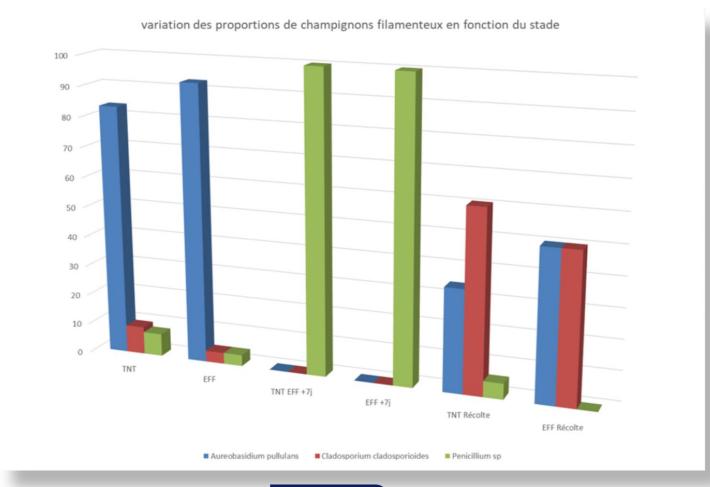
DIVANTIBOT : Résultats *Aureobasidium pullulans*


<u>Implantation</u>:


3 années	Botector +	1 semaine	Botector 2	+1 semaine	Botecto	r récolte	
souche	Α	В	Α	В	Α	В	
B1 1-3	15,67%	23,50%	0,00%	2,23%	0,00%	2,08%	
somme Botector	39,17%		2,23%		2,08%		
B1 4-6	6,67%	19,33%	0,00%	0,00%	6,33%	4,51%	
somme Botector	26,00%		0,00%		10,84%		
B2 1-3	14,67%	5,75%	1,83%	13,20%	2,67%	0,00%	
somme Botector	20,4	42%	15,03%		2,67%		
B2 4-6	14,25%	16,67%	7,23%	8,67%	2,67%	2,11%	
somme Botector	30,9	92%	15,90%		4,77%		
moyenne	19,55%	16,31%	3,76%	6,03%	3,89%	2,17%	
moyenne Botector 1	32,5	32,58%		1,12%		6,46%	
moyenne Botector 2	25,6	25,67%		15,47%		3,72%	
moyenne Botector	29,1	13%	8,2	.9%	5,0	9%	

DIVANTIBOT : Résultats effeuillage

<u>Impact sur levures</u> : peu de différences sauf pour une espèce à la récolte sur TNT



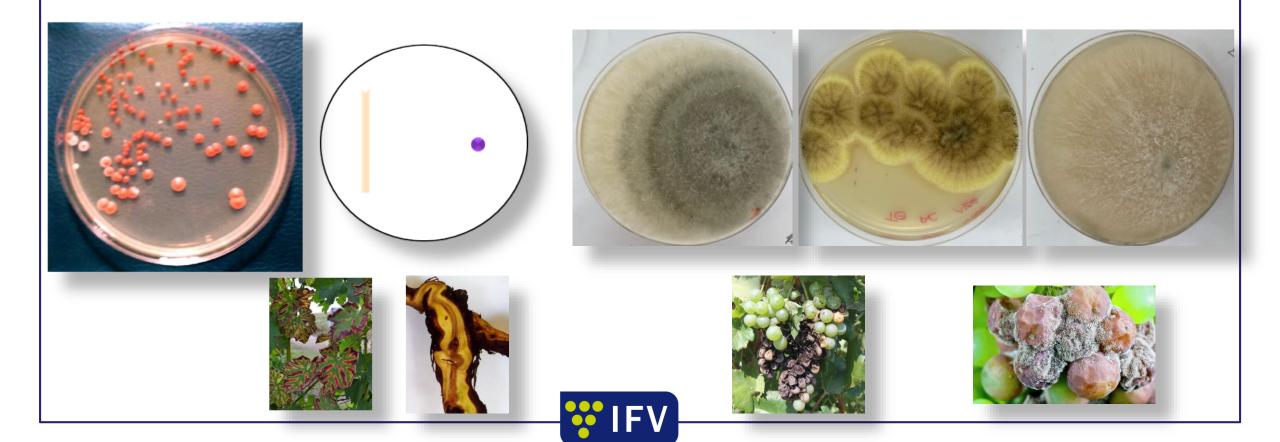
DIVANTIBOT : Résultats effeuillage

<u>Impact sur champignons filamenteux</u> : aucune différence significative entre modalités

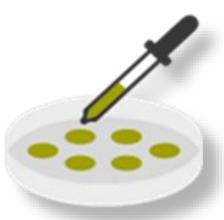
DIVANTIBOT : Résultats effeuillage

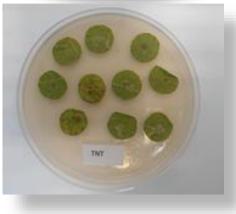
Impact sur diversité fongique :

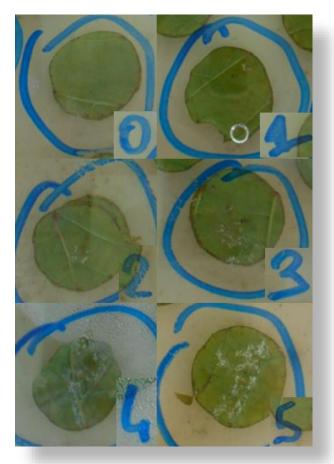
tous stades confondus, aucune différence significative entre modalités au global


3 ans	TNT	EFF
H'	0,40	0,42
J'	0,45	0,53
H'*J'	0,30	0,34
1-D	0,22	0,23

Mais sur les trois années d'étude, c'est sur la modalité témoin à la récolte que la diversité levurienne est la plus importante, alors que c'est sur cette même modalité, mais en début de campagne, qu'elle est la plus réduite


3 ans	TNT TO	EFF TO	TNT EF+7	EFF EF+7	TNT R	EFF R
H'	0,33	0,41	0,30	0,38	0,57	0,47
J'	0,33	0,52	0,40	0,62	0,62	0,44
H'*J'	0,14	0,32	0,22	0,48	0,53	0,23
1-D	0,16	0,20	0,15	0,19	0,36	0,29




<u>Au laboratoire</u> potentialités antifongiques ou antagonistes des non *Saccharomyces* testées contre différents bioagresseurs de la vigne : champignons pionniers des maladies du bois (*Diplodia seriata, Neofusicoccum parvum*), organismes producteurs d'ochratoxine A (*Aspergillus carbonarius*), et *Botrytis*, ...

<u>Au laboratoire</u> potentialités anti mildiou des non *Saccharomyces* par tests sur disques foliaires

Disease Severity:

$$DS (\%) = \frac{\sum (nv)}{NV} \times 100$$

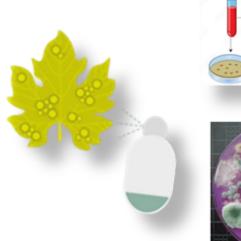
n = le degré d'infection (classe de 0 à 5)

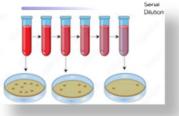
v = le nombre de feuilles dans cette classe

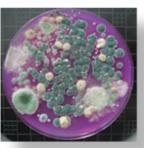
N = le plus au degré d'infection

V = le nombre total de feuilles observées

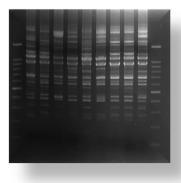
Efficacité selon Abbott :


Eff. (%) =
$$\frac{X - Y}{Y} x \ 100$$


X est la Disease Severity du TNT

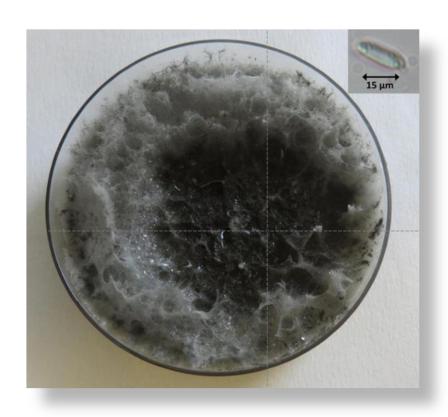

Y est la Disease Severity du programme.

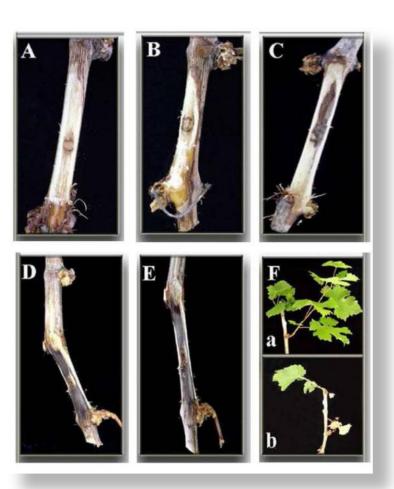
<u>Au laboratoire</u> validation méthode PCR pour contrôles d'implantation des non *Saccharomyces*



rinçage

Mise en culture





A2 (5' TGC CGA GCT G 3 ')
B15 (5' GGA GGG TGT T 3 ')
L15 (5' GAG GGT GGC GGC TAG 3 ')

<u>In planta</u> ensemencement sur rameaux avec *Neofusicoccum parvum*, mesure de la taille des nécroses

À la parcelle Domaine de la Gabillière, domaine du Lycée viticole d'Amboise, test des non Saccharomyces sous brumisation vs TNT et bouillie bordelaise 2kg/ha

				Stade Phén	ologique			
N°	Modalité	18 Mai 2022	25 Mai 2022	2 Juin 2022	5 Juin 2022	15 Juin 2022	23 Juin 2022	5 Juillet 2022
1	Témoin non traité							
6	Référence cuivre	Bouillie Bordelaise RS Disperss NC (2 kg/ha)	Bouillie Bordelaise RS Disperss NC (2 kg/ha)	Bouillie Bordelaise RS Disperss NC (2 kg/ha)	Bouillie Bordelaise RS Disperss NC (2 kg/ha)	Bouillie Bordelaise RS Disperss NC (2 kg/ha)	Bouillie Bordelaise RS Disperss NC (2 kg/ha)	Bouillie Bordelaise RS Disperss NC (2 kg/ha)
33	NSC 3	NSC 3	NSC 3	NSC 3	NSC 3	NSC 3	NSC 3	NSC 3
34	NSC 16	NSC 16	NSC 16	NSC 16	NSC 16	NSC 16	NSC 16	NSC 16
35	NSC 29	NSC 29	NSC 29	NSC 29	NSC 29	NSC 29	NSC 29	NSC 29

Disease Severity:

$$DS (\%) = \frac{\sum (nv)}{NV} \times 100$$

n = le degré d'infection (classe de 0 à 5)

v = le nombre de feuilles dans cette classe

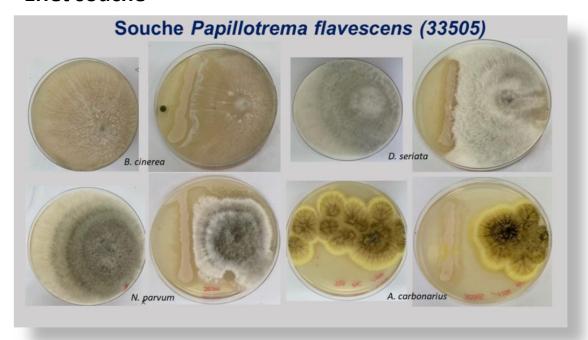
N = le plus au degré d'infection

V = le nombre total de feuilles observées

Efficacité selon Abbott :

Eff. (%) =
$$\frac{X - Y}{Y} x \ 100$$

X est la Disease Severity du TNT


Y est la Disease Severity du programme.

NS CONTROL: Résultats tests vs bioagressseurs

88 souches appartenant à 78 espèces différentes

30 candidats éventuels Antagonisme vs *A. carbonarius* Peu d'anti *Botrytis* Effet souche

	Botryosphaeriaceae	A. carbonarius	B. cinerea
Cryptococcus albidus		+++	
Cryptococcus laurentii		+++	
Cryptococcus tephrensis	+	-	
Cyberlindnera misumaiensis NM 8982	+		
Cystofilobasidium macerans	+	+	
Debaryomyces pseudopolymorphus	+++		
Filobasidium steposum		+++	
Hanseniaspora mrakii	+++		
Hanseniaspora opuntiae		+++	
Hyphopichia pseudobartonii	+++		
Kluyveromyces dobzhanki		+++	
Kwoniella europaea		+++	
Millerozyma farinosa		+++	
NL 33046 non caractérisée		++	
NL 33052 non caractérisée	++	++	
Papiliotrema flavescens NL 33505	+++	++	+++
Pichia galeifromis		+++	
Pichia kluyveri		+++	
Pichia kluyveri NM 8530		+	
Pichia manshurica		++	
Pichia membranifaciens		+++	
Pichia quercuum		+++	
Rhodotorula babjevae	-	+	
Rhodotorula glutinis	+	+	
Rhodotorula subericola	-	+	
Trichosporon akiyoshidainum	+		
Trischoporon beigelii		+++	
Vishniacozyma carnescens	+++		
Vishniacozyma Heimaeyensis NM 9762		++	
Zygoascus hellenicus		+++	

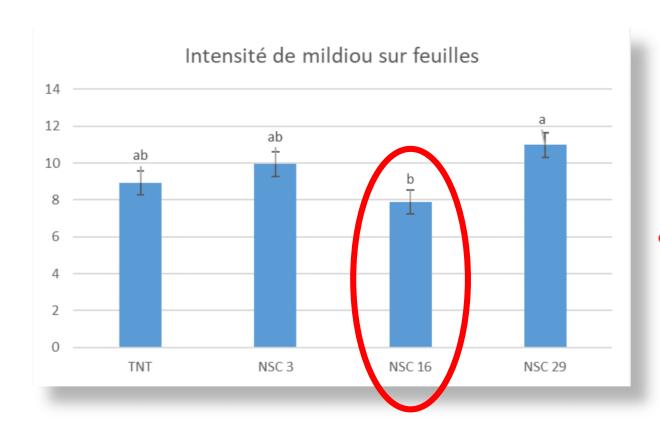
			B. obtusa	B. parva	A. carbonarius	B. cinerea
NSC12	NM 8918	Papiliotrema flavescens	-	-		
NSC24	NM 9702	Papiliotrema flavescens	-			
NSC32	NL 26869	Papiliotrema flavescens				
NSC33	NL 34039	Papiliotrema flavescens				-
NSC34	NI 33505	Papiliotrema flavescens	+++	++	++	+++
NSC35	NL 33471	Papiliotrema flavescens				

NS CONTROL : Résultats tests foliaires

21 souches testées contre le mildiou

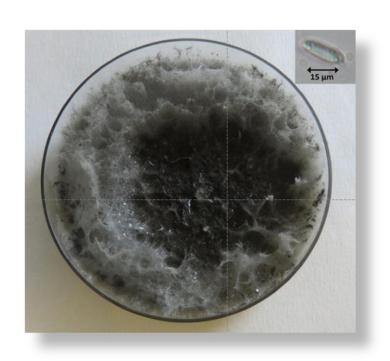
Modalité	j + 7	j + 15
Témoin eau	0	0
Témoin Milieu	16,1	5,7
NSC 12	13,2	17,8
NSC 15	29,0	21,2
NSC 26	22,6	23,5
NSC 22	19,4	24,4
NSC 8	35,5	26,5
NSC 9	33,3	27,0
NSC 25	39,9	27,5
NSC 27	32,3	29,4
NSC 23	6,5	33,1
NSC 18	34,3	34,6
NSC 21	39,9	36,1
NSC 19	20,5	36,5
NSC 13	46,6	55,9
NSC 24	58,1	55,9
NSC 1	01,5	57 A
NSC 3	73,3	77,1
NSC 16	83,9	81,1
NSC 29	76,6	90,9

Modalité	1+7	J+10	
INSC3	10	-6	
NSC16	17	16	
NSC29	14	13	
NL33040	1-1	ף	
NL33052	0	-6	
NL33505	3	3	
		•	-


Test à la parcelle

2022

NS CONTROL : Résultats parcelle



Modalités	D.S. (%)	Efficacité
TNT- Témoin non traité	21,5%	
Référence Cuivre	14.5 %	32.7 %
NSC2	24.1 %	0 %
NSC 16	19.9 %	7.6 %

validation PCR RAPD avec amorces A2 et B15 © mais implantation non validée à j+7 🙁

NS CONTROL : Résultats in planta vs N. parvum

		taille nécrose (cm)
témoi	n <i>N. naryum</i>	9.33
NL 22	290	4,67
NL 23	334	10,33
NL 33	052	10,67
NL 03	807	10,40
NL 33	046	8,50
NL 33	505	8,25

Vishniacozyma carnescens

Conclusions

DIVANTIBOT:

<u>Aureobasidium pullulans</u>

méthodologie de contrôle de l'implantation d'A. pullulans et d'étude de la diversité infraspécifique : technique simple et abordable permettant de vérifier l'implantation de toutes les solutions fongiques de biocontrôle.

absence d'attaque de Botrytis : résultats indicatifs

la solution de biocontrôle Botector® peut bien s'implanter et coloniser la baie, mais de manière aléatoire. influence notable des conditions météorologiques post-traitement (canicule, sécheresse)

efficacités aléatoires = difficulté de positionnement des traitements et susceptibilité aux aléas climatiques

Intérêt d'apporter en surplus une population déjà majoritaire sur baie et dont les conditions optimales de croissance recouvrent celles de l'agent de la pourriture grise (10-25 °C) ?

Conclusions

DIVANTIBOT:

Effeuillage

Peu d'action directe sur la structure du microbiote uval, sauf peut-être en situation de sécheresse et de canicule, (augmentation exposition des microorganismes à des conditions peu favorables au développement microbien).

En termes de biodiversité, l'effeuillage ne modifie pas les indices mathématiques. L'impact de l'effeuillage ne semble donc jouer que sur l'abondance au sein de chaque espèce rencontrée.

Par ailleurs, impact réel sur le microbiote endogène limité aux jours suivant immédiatement cette intervention. Les différences s'estompent nettement à l'approche de la récolte, période où le risque *Botrytis* est particulièrement important.

Conclusions

NS CONTROL:

Contrôles d'implantation

Méthode RAPD PCR avec amorces A2, B15, L15, D03 et F16 validée sur de nombreuses espèces de non Saccharomyces

In vitro

14 Non *Saccharomyces* candidats repérés in vitro pour leur intérêt éventuel dans le biocontrôle d'A. carbonarius (OTA)

4 versus les Botryospheriaceae

A l'avenir, elles devront aussi être testées sur disques foliaires contre le mildiou et contre B. cinerea.

In planta

1 souche de Vishniacozyma carnecens avec réduction de 50% des nécroses dues à N. parvum

<u>parcelle</u>

1 souche de *M. pulcherrima* à efficacité anti mildiou relative (8% sous brumisation), susceptible de remplacer un Cu, à retester de manière plus poussée

DIVANTIBOT: Conclusion Générale

Si tant est qu'elle soit pertinente, et compte tenu du caractère aléatoire de l'implantation d'Aureobasidium dans des conditions estivales normales, il conviendrait de limiter son utilisation aux stades précoces du développement végétatif, permettant, si nécessaire, de retarder le moment de l'effeuillage ou de l'emploi d'autres solutions de biocontrôle.

NS CONTROL : Conclusion Générale

Des prétendants plus ou moins solides, mais incertitudes et d'obstacles devront être levés afin de d'aboutir à des solutions de biocontrôle robustes à partir de ces essais liminaires :

explorer l'effet souche au sein de chaque espèces d'intérêt, comprendre les facteurs abiotiques impactant l'efficacité du biocontrôle, cerner les caractéristiques physiologiques des candidats et définir leur formulation optimale,

définir des rythmes et périodes de traitement adaptées aux espèces utilisées,

expérimenter les itinéraires synergiques combinant, en simultané ou en séquentiel, plusieurs solutions de biocontrôle.

mobilisation des partenaires académiques et économiques sera indispensable.

Merci pour votre attention

